Mathematical Appendix to Rohde \& Schwarz Application Note 1GP45

April 5, 2001

Oversampling for ARB with Interpolation Filter

Let W_{I} be the bandwidth of the interpolation filter and W_{S} the bandwidth of the modulated signal. To avoid cutting the signal with the interpolation filter:

$$
\begin{equation*}
W_{I} \geq W_{S} \tag{1}
\end{equation*}
$$

This equation can be written as:

$$
\begin{equation*}
\frac{O \cdot f_{\text {sym }}}{f_{\text {sample }}} \cdot W_{I} \geq W_{S} \tag{2}
\end{equation*}
$$

with $f_{\text {sample }}$ being the sample rate, O the oversampling factor and $f_{\text {sym }}$ the sample rate of the signal. (Remember that $f_{\text {sample }}=O \cdot f_{\text {sym }}$) This gives:

$$
\begin{equation*}
O \cdot \frac{W_{I}}{f_{\text {sample }}} \geq \frac{W_{S}}{f_{\text {sym }}} \tag{3}
\end{equation*}
$$

For a W-CDMA signal with a $\sqrt{\cos }$ filter, $\alpha=0.22$:

$$
\begin{equation*}
\frac{W_{S}}{f_{s y m}}=\frac{1+\alpha}{2}=0.61 \tag{4}
\end{equation*}
$$

The interpolation filter has the standardized bandwidth:

$$
\begin{equation*}
\frac{W_{I}}{f_{\text {sample }}}=0.375 \tag{5}
\end{equation*}
$$

This gives:

$$
\begin{equation*}
O \geq \frac{0.61}{0.375}=1.63 \tag{6}
\end{equation*}
$$

Effect of non-ideal I/Q Signals

We will discuss this for a single CW carrier with an offset from the RF center frequency, i.e. at $\omega_{0}+\omega_{M}$.

Ideal I/Q Signal

The ideal I/Q signal for this scenario is:

$$
\begin{align*}
I(t) & =\cos \omega_{M} t \tag{7}\\
Q(t) & =\sin \omega_{M} t \tag{8}
\end{align*}
$$

Then - if we assume that the I/Q modulator itself is ideal - the modulated RF signal will be:

$$
\begin{align*}
s(t) & =\Re\left\{(I(t)+\imath Q(t)) e^{\imath \omega_{0} t}\right\} \\
& =\cos \omega_{M} t \cdot \cos \omega_{0} t-\sin \omega_{M} t \cdot \sin \omega_{0} t \tag{9}\\
& =\cos \left(\omega_{0}+\omega_{M}\right) t
\end{align*}
$$

Non-ideal I/Q signal

Now we introduce two small disturbances: we slightly change the amplitude of the Q signal and indroduce a deviation from the ideal phase (90 degrees) between I and Q:

$$
\begin{align*}
I(t) & =\cos \omega_{M} t \tag{10}\\
Q(t) & =(1+\epsilon) \sin \left(\omega_{M} t+\varphi\right) \tag{11}
\end{align*}
$$

with $\epsilon \ll 1, \varphi \ll 1$. For φ the following approximations are valid:

$$
\begin{equation*}
\sin \varphi \approx \varphi, \quad \cos \varphi \approx 1 \tag{12}
\end{equation*}
$$

Expanding $Q(t)$ and using (12) gives:

$$
\begin{equation*}
Q(t)=\sin \omega_{M} t+\varphi \cos \omega_{M} t+\epsilon \sin \omega_{M} t+\varphi \epsilon \cos \omega_{M} t \tag{13}
\end{equation*}
$$

The last term in (13) is of second order nature and can be neglected, so:

$$
\begin{equation*}
Q(t)=\sin \omega_{M} t+\varphi \cos \omega_{M} t+\epsilon \sin \omega_{M} t \tag{14}
\end{equation*}
$$

The RF signal is again calculated with:

$$
\begin{equation*}
s(t)=\Re\left\{(I(t)+\imath Q(t)) e^{\imath \omega_{0} t}\right\} \tag{15}
\end{equation*}
$$

This leads to the following result :

$$
\begin{align*}
s(t)= & \cos \left(\omega_{0}+\omega_{M}\right) t \\
& -\left(\varphi \cos \omega_{M} t+\epsilon \sin \omega_{M} t\right) \sin \omega_{0} t \tag{16}
\end{align*}
$$

which can be written as:

$$
\begin{align*}
s(t)= & \cos \left(\omega_{0}+\omega_{M}\right) t \\
& -\frac{\varphi}{2}\left[\sin \left(\omega_{0}+\omega_{M}\right) t+\sin \left(\omega_{0}-\omega_{M}\right) t\right] \tag{17}\\
& +\frac{\epsilon}{2}\left[\cos \left(\omega_{0}+\omega_{M}\right) t-\cos \left(\omega_{0}-\omega_{M}\right) t\right]
\end{align*}
$$

The first terms in the second and third row can be neglected compared to the undisturbed signal (first row), especially if the signal is measured with a spectrum analyzer that usually has a logarithmic scale. Thus:

$$
\begin{align*}
s(t) & =\cos \left(\omega_{0}+\omega_{M}\right) t-\frac{\varphi}{2} \sin \left(\omega_{0}-\omega_{M}\right) t-\frac{\epsilon}{2} \cos \left(\omega_{0}-\omega_{M}\right) t \\
& =\cos \left(\omega_{0}+\omega_{M}\right) t-A \sin \left[\left(\omega_{0}-\omega_{M}\right) t+\phi\right] \tag{18}
\end{align*}
$$

with:

$$
\begin{align*}
A & =\frac{1}{2} \sqrt{\epsilon^{2}+\varphi^{2}} \tag{19}\\
\tan \phi & =\frac{\varphi}{\epsilon} \tag{20}
\end{align*}
$$

